Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Biomol Struct Dyn ; : 1-19, 2022 Aug 09.
Article in English | MEDLINE | ID: covidwho-1978100

ABSTRACT

Coronavirus disease (COVID-19) has the virus that causes the SARS-CoV-2 severe acute respiratory syndrome, which has reached a pandemic proportion, with thousands of deaths worldwide already registered. It has no standardized effective clinical treatment, arousing the urgent need for the discovery of bioactive compounds for the treatment of symptoms of COVID-19. In this context, the present study aimed to evaluate the influence of seasonality on the yield and chemical composition of the essential oils of Piper cernuum and Piper rivinoides as well as to evaluate the anti-SARS-CoV-2 potential of the major components of each oil by molecular docking and quantum chemical calculation (Density Functional Theory method), being possible indicate that the winter and autumn periods, the seasons of the year where it is possible to obtain the highest percentage of Piper cernuum and Piper rivinoides oils, respectively. Regarding the anti-SARS-Cov-2 potential, the present work showed that the dihydroagarofuran present in Piper cernuum, presented a strong interaction with amino acid residues from Mpro, presenting a potential similar to Remdesivir, a drug for clinical use. Regarding methyltransferase, dihydroagarofuran (Piper cernuum) and myristicin (Piper rivinoids) showed better affinity, with important interactions at the active site of the inhibitor Sinefugin, suggesting a potential inhibitory effect of the heterodimer methyltransferase complex NSP16-NSP10 SARS Cov-2. Molecular docking and molecular dynamics studies represent an initial step, being indicative for future in vitro studies of dihydroagarofuran and myristicin, as possible pharmacological tools for COVID-19.

2.
Futur J Pharm Sci ; 7(1): 185, 2021.
Article in English | MEDLINE | ID: covidwho-1403274

ABSTRACT

BACKGROUND: The sanitary emergency installed in the world, generated by the pandemic of COVID-19, instigates the search for scientific strategies to mitigate the damage caused by the disease to different sectors of society. The disease caused by the coronavirus, SARS-CoV-2, reached 216 countries/territories, where about 199 million people were reported with the infection. Of these, more than 4 million died. In this sense, strategies involving the development of new antiviral molecules are extremely important. The main protease (Mpro) from SARS-CoV-2 is an important target, which has been widely studied for antiviral treatment. This work aims to perform a screening of pharmacodynamics and pharmacokinetics of synthetic hybrids from thymoquinone and artemisin (THY-ART) against COVID-19. RESULTS: Molecular docking studies indicated that hybrids of artemisinin and thymoquinone showed a relevant interaction with the active fraction of the enzyme Mpro, when compared to the reference drugs. Furthermore, hybrids show an improvement in the interaction of substances with the enzyme, mainly due to the higher frequency of interactions with the Thr199 residue. ADMET studies indicated that hybrids tend to permeate biological membranes, allowing good human intestinal absorption, with low partition to the central nervous system, potentiation for CYP-450 enzyme inhibitors, low risk of toxicity compared to commercially available drugs, considering mainly mutagenicity and cardiotoxicity, low capacity of hybrids to permeate the blood-brain barrier, high absorption and moderate permeability in Caco-2 cells. In addition, T1-T7 tend to have a better distribution of their available fractions to carry out diffusion and transport across cell membranes, as well as increase the energy of interaction with the SARS-CoV-2 target. CONCLUSIONS: Hybrid products of artemisinin and thymoquinone have the potential to inhibit Mpro, with desirable pharmacokinetic and toxicity characteristics compared to commercially available drugs, being indicated for preclinical and subsequent clinical studies against SARS-CoV-2. Emphasizing the possibility of synergistic use with currently used drugs in order to increase half-life and generate a possible synergistic effect. This work represents an important step for the development of specific drugs against COVID-19.

3.
Journal of Computational Biophysics & Chemistry ; : 1, 2021.
Article in English | Academic Search Complete | ID: covidwho-1175201

ABSTRACT

It is of great importance for the pharmaceutical industry to find therapeutic substances extracted from natural sources, which are abundant, obtained with low costs and presenting the antiviral potential for the treatment of Zika virus (ZIKV) and COVID-19. Tangeretin (TAN) is a citrus polymethoxyflavone from Citrus reticulata peel oil with known antiviral activities, whose physico-chemical properties are not reported. The present study aimed to investigate by a theoretical screening of electronic, structural properties and pharmacodynamic and pharmacokinetic parameters that characterize TAN as a therapeutic drug in the treatment and prevention of zika fever and COVID-19. The molecule reached its minimum energy-forming state of −795.85747kJ/mol and the HOMO and LUMO boundary orbitals reactivity descriptors suggest that the compound is stable and does not tend to be reactive in intermolecular interactions. The ligand connects to the NS1 ZIKV receptor with strong H-bond interactions, also connects with the NS5 ZIKV receptor in a competitive effect with the SAM inhibitor and acts in a supplementary effect with the N3 inhibitor and the BRT drug in the Mpro SARS-CoV-2 receptor. The properties of ADMET shows that the compound suffers few amounts of drug alterations because it inhibits the metabolic enzymes CYP2C9 and CYP3A4 and penetrates the central nervous system, without accumulation of drug residues in the blood or in the lumen in the gastrointestinal tract, without risk of toxicity to the patient. With the results obtained, it is possible to identify TAN as a promising pharmacological tool for the treatment and prevention of Zika fever and COVID-19. [ABSTRACT FROM AUTHOR] Copyright of Journal of Computational Biophysics & Chemistry is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

4.
Biochem Biophys Res Commun ; 537: 71-77, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-987123

ABSTRACT

The sanitary emergency generated by the pandemic COVID-19, instigates the search for scientific strategies to mitigate the damage caused by the disease to different sectors of society. The disease caused by the coronavirus, SARS-CoV-2, reached 216 countries/territories, where about 20 million people were reported with the infection. Of these, more than 740,000 died. In view of the situation, strategies involving the development of new antiviral molecules are extremely important. The present work evaluated, through molecular docking assays, the interactions of 4'-acetamidechalcones with enzymatic and structural targets of SARS-CoV-2 and with the host's ACE2, which is recognized by the virus, facilitating its entry into cells. Therefore, it was observed that, regarding the interactions of chalcones with Main protease (Mpro), the chalcone N-(4'[(2E)-3-(4-flurophenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPF) has the potential for coupling in the same region as the natural inhibitor FJC through strong hydrogen bonding. The formation of two strong hydrogen bonds between N-(4[(2E)-3-(phenyl)-1-(phenyl)-prop-2-en-1-one]) acetamide (PAAB) and the NSP16-NSP10 heterodimer methyltransferase was also noted. N-(4[(2E)-3-(4-methoxyphenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPM) and N-(4-[(2E)-3-(4-ethoxyphenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPE) chalcones showed at least one strong intensity interaction of the SPIKE protein. N-(4[(2E)-3-(4-dimetilaminophenyl)-1-(phenyl)-prop-2-en-1-one]) acetamide (PAAPA) chalcone had a better affinity with ACE2, with strong hydrogen interactions. Together, our results suggest that 4'-acetamidechalcones inhibit the interaction of the virus with host cells through binding to ACE2 or SPIKE protein, probably generating a steric impediment. In addition, chalcones have an affinity for important enzymes in post-translational processes, interfering with viral replication.


Subject(s)
Acetamides/chemistry , Acetamides/pharmacology , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/pharmacology , Chalcone/analogs & derivatives , Coronavirus 3C Proteases/chemistry , Molecular Docking Simulation , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Chalcone/chemistry , Chalcone/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Humans , Microbial Sensitivity Tests , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL